
SMFFTI User Manual
Applies to v0.45 - December 5, 2023

Table of Contents
Introduction.. 1
Basic Usage.. 2
Automatically-Generated Rhythm Patterns...6
Automatically-Generated Melodies.. 8
Specifying a Fixed Melody.. 9
Random Funk-Guitar Grooves... 11
Automatically-Generated Chord Progressions... 13
Auto-Chords Customization.. 14
Random Chord Replacement.. 18
MIDI-to-SMFFTI Conversion.. 19
Set Parameter Operation.. 20
SMFFTI Command File Wizard... 21
Command File Parameter Reference... 23
System Parameter Reference... 31
Full Example Command File... 32

Introduction

SMFFTI is short for: Simple MIDI Files From Text Input. It is a program for creating basic MIDI
files containing chord progressions that have been specified in plain text files. These MIDI
files can then be dropped straight into Ableton Live. (The created MIDI should work with
other DAWs, but can only be guaranteed to work in Ableton Live, because that's all I've got.)

Editing notes in the Ableton Live piano roll can get a bit tedious, especially for things like
velocity. This program tries to make life slightly easier by allowing you to simply specify the
chords and a few other basic parameters, such that a MIDI file can quickly be created.

The MIDI files themselves are single-channel (0) and single-track, just as if you had created
it inside an Ableton Live channel and exported the clip.

Warning: It's a Windows-only console application, and works only for 4/4 time. Sorry about
that, people! Thing is, I created for me, but decided to release it for any interested party.

Nevertheless, it offers some handy features, like randomized velocity, randomized note
start/end, downward note transposition (inversion), arpeggiation and randomized chord
progressions, rhythm patterns and melody lines.

SMFFTI.exe does not need special installation. Just place it in a convenient folder. To use it,

1 of 33

open a Command Window (type "cmd" in the Windows taskbar search field). In the
Command Window, locate yourself in the folder where SMFFTI.exe lives. For example, if you
put SMFFTI.exe in your Documents folder (eg. C:\Users\Fred\Documents), then in the
Command Window type:

pushd C:\Users\Fred\Documents

It's convenient now to also create your SMFFTI command files in the same folder. For this,
use your text editor of choice. Notepad will do.

Disclaimer: This program is free to use for personal and commercial use,
but no responsibility is taken by the developer(s) for errors or failures as a
result of using it. It is a purely experimental product and may well contain a
number of bugs. If used as expected it should perform adequately, ie. don't
specify meaningless or extreme parameter values. Use at your own
discretion.

Basic Usage

NB. To determine which version of SMFFTI you are using, enter this command:

SMFFTI.exe -v

Creation of MIDI files, and various other SMFFTI operations, is controlled using plain text
files that specify various directives and parameters. You can use any text editor you like to
create and amend such SMFFTI command files. For a comprehensive example of a SMFFTI
command file see section Full Example Command File.

Here is the simplest example of a SMFFTI command file that defines a chord progression:

$. . . | . . . | . . . | . . . $. . . | . . . | . . . | . . .
+###############+###### ########+###############+###############
F, Am, G, C

NB. If you want to generate a basic SMFFTI command file that includes
most of the necessary parameters, you can use a wizard which asks a
few simple questions and then creates a custom file for you. See
section SMFFTI Command File Wizard.

The first line is a ruler. Each dollar sign indicates the start of a bar. The vertical bars are
aligned on 1/4 notes. The dots are aligned on 1/16th notes. (Thus, the smallest note length
possible is 1/32nd notes.) The ruler is just a guide for you to see where to place your notes
on the second line. Though the example shows two bars, you can specify between one and
four bars per line.

2 of 33

(NB. From version 0.4 the above ruler style replaces the old ruler style,
which was:

[......|.......|.......|.......]

The new style ruler is considered clearer to use. However, you can still
use the old style ruler.

The second line indicates where the notes play in the bar(s), using sequences of characters
consisting of either (a) a single plus sign followed by zero or more hash signs or (b) one or
more hash signs. These sequences of characters are analogous to the horizontal notes you
draw in the piano roll in your DAW. The plus signs indicate the start of a chord
(corresponding to the chord names in the third line) and the subsequent hashes indicate the
length of the notes. A series of hashes without an initial plus sign means: Play the same
chord again. The number of plus signs MUST correspond to the number of chords specified
on the third line.

The third line specifies the chords you want playing. It is simply a series of comma-
separated chord names. The number of chords must correspond to the number of plus
signs in the second line.

All three lines are required to specify a sequence of chords.

So, in this example, we play F (major) for half a bar; followed by Am for almost a quarter
note and Am again for a quarter note; then G (major) for half a bar, and finally C (major) for
half a bar. Notice the space at the end of the third quarter note of the first bar: This ends the
playing of Am, and then Am is played again for a quarter note, but because it is the same
chord, we don't need a plus sign.

We have four plus signs, corresponding to four chords; but we actually have five chords
playing.

To convert this text into a MIDI (.mid) file, put the text into a file called, say, mymidi.txt, and
run SMFFTI.exe in a Command Window, eg.

SMFFTI.exe mymidi.txt test.mid [-o]

In this example, SMFFTI.exe and mymidi.txt are in the same folder.

The -o switch is optional and means overwrite the output MIDI file if it exists. If the output
file already exists and -o is not specified, your output file will not be created. You should
now be able to drag test.mid straight into an Ableton Live MIDI channel.

Here's another two-bar example:

$. . . | . . . | . . . | . . . $. . . | . . . | . . . | . . .
+############## +###### ####### +############## +###############
C(3), Am

3 of 33

Notice the number 3 in parentheses. This is a shorthand way of indicating a chord should
be played multiple times. This is the equivalent of:

$. . . | . . . | . . . | . . . $. . . | . . . | . . . | . . .
+############## +###### ####### +############## +###############
C, C, C, Am

By default the chord root notes are placed in the C3 - B3 octave; thus the lowest note will
be C3. This can be changed using a parameter, which is described later on.

There is a limited range of chord types that can be specified, and these are:

• Major (eg. C)
• Dominant 7th (C7)
• Major 7th (Cmaj7)
• Dominant 9th (C9)
• Major 9th (Cmaj9)
• Add 9 (Cadd9)
• Minor (Cm)
• Minor 7th (Cm7)
• Minor 9th (Cm9)
• Minor Add 9 (Cmadd9)
• Sus 2 (Csus2)
• 7 Sus 2 (C7sus2)
• Sus 4 (Csus4)
• 7 sus 4 (C7sus4)
• 5th aka Power Chord (C5)
• Diminished (Cdim)
• Diminished 7th (Cdim7)
• Half-diminished (Cm7b5)

The examples in parentheses here show how you must specify the chord types, eg.

$. . . | . . . | . . . | . . . $. . . | . . . | . . . | . . .
+############## +###### ####### +############## +###############
C7, Bbadd9, F#maj7, Gsus2

Note here the use of a lowercase b to indicate a flat chord, and a hash sign for a sharp
chord.

That's it, really, for bashing out quick chord progressions. You just need one or more sets of
three lines (1. ruler; 2. note positions; and 3. chord names). You can space them out, ie.
insert blank lines wherever you like to make the text file more readable. You can also
include comment lines by starting a line with a hash sign. For example:

This is a chord progression I've been noodling
with on my guitar.

4 of 33

$. . . | . . . | . . . | . . . $. . . | . . . | . . . | . . .
+############## +###### ####### +############## +###############
C(3), Am

$. . . | . . . | . . . | . . . $. . . | . . . | . . . | . . .
+############## +###### ####### +############## +###############
C, Am, F, G

You can also comment out a series of lines by surrounding them with (# and #), eg.:

Disable the first two bars

(#
$. . . | . . . | . . . | . . . $. . . | . . . | . . . | . . .
+############## +###### ####### +############## +###############
C(3), Am
#)

$. . . | . . . | . . . | . . . $. . . | . . . | . . . | . . .
+############## +###### ####### +############## +###############
C, Am, F, G

So far, so good - you now have a general idea of how SMFFTI operates. But the program
includes additional features that add some sophistication to your MIDI files. These features
attempt to save you time that would be spent laboriously editing the MIDI directly inside
Ableton Live, as well as automatically generate creative MIDI file content that gives you a
good starting point for developing your track's rhythms and melodies.

To achieve this, a SMFFTI file may contain, not only chord progression data, but also
parameters. Parameters are values which modify the behaviour of SMFFTI when it runs.
Parameters are indicated with a plus (+) sign at the beginning, followed by a identifier, an
equals (=) sign and a value. For example:

+Velocity = 80

Note that all parameters must be defined before the chord progression data. In other
words, the chord progression data must be at the end of the file.

The rest of this document describes the various operations and features of SMFFTI, and
makes references to a multitude of parameters. Be sure to consult the Command File
Parameter Reference section for information about all the parameters that can be included
in SMFFTI command files.

5 of 33

Automatically-Generated Rhythm Patterns

The basic operation of SMFFTI, as you have seen, requires specifying a sequence of note
position strings - the "+############## +###### +######" strings. So it's up to you to define
your rhythm, which may be fine for you. However, SMFFTI allows you to inject a randomized
rhythm pattern into the command files, such that "+############## +###### #######" is
modified to, for example "+### +### +#### +### +# +## +##". This feature is called Auto-
Rhythm.

Auto-Rhythm can be applied to chord sequences, melodies and basslines for groovier,
syncopated rhythms.

Auto-Rhythm works by creating a modified version of your SMFFTI command file, and is
almost identical except that the original note position strings are replaced with ones that
represent an enhanced rhythmic pattern. To invoke Auto-Rhythm, execute SMFFTI in this
form:

SMFFTI.exe -ar mymidi.txt mymidi_autorhythm.txt [-o]

Note the -ar switch. In this mode a .MID file is not produced, but rather, another SMFFTI
command file which, as already mentioned, is almost identical to the input command file,
except for modified note position strings.

(Note, again, the -o option to automatically overwrite an existing version of the output file.)

Next, you use the generated command file to create a .MID file, eg:

SMFFTI.exe mymidi_autorhythm.txt mymidi_autorhythm.mid [-o]

Then you can load the .MID file into Ableton Live and see how it sounds. You can then
either tweak the MIDI in situ, or run SMFFTI again in Auto-Rhythm mode to get another
randomized rhythm pattern.

How is the randomized rhythm controlled? By using an algorithm to determine the
frequency and length of both the notes and gaps between the notes. Can it be tweaked?
Yes: The default operation of Auto-Rhythm can be adjusted by including any or all of these
three command file parameters in the SMFFTI command file:

+AutoRhythmNoteLenBias=<value>
+AutoRhythmGapLenBias=<value>
+AutoRhythmConsecutiveNoteChancePercentage=<value>

Command File Parameters are items that you can include to invoke special modes and
operations. They are introduced as we describe SMFFTI features, but please consult the
Command File Parameter Reference section for the full list.

+AutoRhythmNoteLenBias

6 of 33

+AutoRhythmNoteLenBias defines a weighting that specifies the chances of notes
being a given length. First, you should be aware that, with Auto-Rhythm, notes will
not traverse a single bar; that is, all notes, regardless of length, will be confined to
the single bar they play in.

The length of a note can be a whole note, half note, quarter note, eighth note,
sixteenth or thirty-second. The relative chances of which of these lengths to
randomly choose is defined in a comma-separated list, eg:

+AutoRhythmNoteLenBias=0, 0, 8, 16, 16, 4

Reading from left-to-right, values are specified for whole, 1/2, 1/4, 8th, 16th and 32nd
notes. This example means that no whole or half notes are possible, and that it is
twice as likely for 8th and 16th notes to be played as 1/4 notes. It is also twice as
likely for 1/4 notes to be played as 32nd notes.

Since, as we mentioned, notes are not allowed to carry over into the next bar, you
can have only one whole note in a bar, or two half notes, or four 1/4 notes, etc.
Therefore, as SMFFTI proceeds through each bar of your original note position
template, it will be able to choose only note lengths that fit into the remaining space
in the bar. It can thus be seen that, as space in the bar reduces, the chances of fitting
in smaller notes increases, overriding the normal randomized selection.

So as you can appreciate, if you want a tighter groove for perhaps an up-tempo
track, you will likely give greater priority to shorter notes. It's really a suck-it-and-see
process to finally arrive at something you like.

By the way, for the sake of not entirely ruining the rhythm generated, no notes will
ever begin on even-numbered 32nd notes - it just doesn't ever sound right, in this
author's opinion ;-)

+AutoRhythmGapLenBias

+AutoRhythmGapLenBias is similar to +AutoRhythmNoteLenBias but defines a weighting that
specifies the chances of the gaps between notes being a given length. Example:

+AutoRhythmGapLenBias=0, 0, 0, 4, 8, 1

This example means that there will never be any whole, half or 1/4 note gaps; and
that there is twice as much chance of 16th note gaps as 8ths. Four times the
possiblity of 8ths as 32nds.

Technical note: Whereas it's possible (and likely) to have consecutive notes, it is not
possible for consecutive gaps - the program applies this to avoid the likelihood of
huge gaps occurring between notes. But you shouldn't have to worry about this.

+AutoRhythmConsecutiveNoteChancePercentage

7 of 33

+AutoRhythmConsecutiveNoteChancePercentage specifies the chances of consecutive
notes, that is, no gaps between notes. Percentage value, ie. range 0 - 100. The
higher the value, the less gaps between notes. If you are aiming for a stacatto style
for a chord progression, you will likely want less chance of consecutive notes, since
they will run into each other. Whereas, if your rhythmic pattern is intended to
accompany a melody instead of a chord progression (see the following sections)
then you might well prefer a greater chance of consecutive notes.

Note that Auto-Rhythm will always generate a rhythm pattern across the entire bar length; it
is not dictated by the note lengths specified in the original chord progression. (This is
different from the behaviour of Automatically-Generated Melodies (described below) where
the notes of the generated melody conform exactly to the note lengths of the original chord
progression.)

Automatically-Generated Melodies

The basic operation of SMFFTI creates MIDI files containing chords. But it is also possible to
make SMFFTI output single notes instead of chords, using the Auto-Melody mode. Auto-
Melody uses randomization to choose which notes to output, based on the underlying
chord specified in your source SMFFTI command file.

For extra musicality, in the case of major and minor chords (not suspended or diminished
chords), as well as the notes of the underlying chord, by default SMFFTI will also output a
few occurrences of notes from the respective pentatonic scale. This feature can be
disabled by setting parameter +AutoMelodyDontUsePentatonic = 1.

The randomized selection of notes for the melody is biased firstly toward the root and fifth
notes, then the third note; and then, if applicable, notes from the chord's underlying
pentatonic scale.

To invoke Auto-Melody, add this line to your SMFFTI command file:

+AutoMelody=1

Run SMFFTI as normal, eg:

SMFFTI.exe mymidi.txt mymidi.mid [-o]

The presence of the +AutoMelody=1 parameter causes two things:

1. The created .MID file contains a randomized melody line instead of chords.

2. The creation of a text file that echoes the generated melody line. The name of
the file includes a timestamp, eg. mymidi_220728125019.txt, that makes it unique

8 of 33

every time you generate a new iteration. Here is an example of the contents of
this text file:

$. . . | . . . | . . . | . . . $. . . | . . . | . . . | . . .
+####### +# +###+# +# +# +#+#+ +# + +# +# +#+# +# +#
Bb, Bb, Am, Am, Am, Gm, Gm, Gm, Gm, Gm, Gm, Gm, Gm, Am, Am, Am, Am
M: 4, 2, 3, 10, 3, 7, 0, 0, 7, 7, 5, 3, 0, 10, 3, 5, 10

$. . . | . . . | . . . | . . . $. . . | . . . | . . . | . . .
+###+###+### +#+# +# +###+### +# +###+###+# + +# +# +#
Bb, Bb, Bb, Bb, Am, Am, Am, Gm, Gm, Gm, Gm, Gm, Gm, Gm, Gm, Gm
M: 0, 4, 4, 9, 3, 3, 7, 5, 7, 0, 7, 3, 0, 5, 10, 7

$. . . | . . . | . . . | . . . $. . . | . . . | . . . | . . .
+###+### +#+###+### +# +###+### +# + + +###+### +#+#
Bb, Bb, Bb, Bb, Am, Am, Am, Gm, Gm, Gm, Gm, Gm, Am, Am, Am
M: 2, 2, 4, 7, 7, 10, 7, 0, 10, 3, 7, 10, 0, 5, 0

$. . . | . . . | . . . | . . . $. . . | . . . | . . . | . . .
+###+#+# + +###+#+# + +#+# +####### +# +### +# + +# #
Bb, Bb, Bb, Bb, Bb, Ab, Ab, Ab, Ab, F, F, F, F, F, F, F
M: 0, 0, 4, 0, 9, 0, 9, 9, 0, 0, 4, 4, 7, 9, 7, 9, 4

This file contains chord progression data from the original file (in this case with a
complex rhythm) but also a sequence of notes indicated by the "M:" lines. The
values are semitone intervals: Zero meaning the root note.

The melody saved here can be used in any SMFFTI command file by porting
across these "M:" lines - more about this in the next section Specifying a Fixed
Melody.

Note that if you have set +AutoMelody=1 in the command file it will be ignored if you specify
-ar (AutoRhythm) in the command to SMFFTI.

Note that Auto-Melody will always generate a melody line that conforms exactly to the note
lengths of the original chord progression. (This is different from the behaviour of Auto-
Rhythm where the generated rhythm pattern extends to the entire bar length, regardless of
the note lengths of the chord progression.)

Specifying a Fixed Melody

The Automatically-Generated Melodies section describes one way of creating randomized
melody lines (there is actually another), which automatically outputs the generated melody
to the .MID file. However, if you want to fix the melody, so to speak, so that whenever you
run SMFFTI it will always output that melody to the .MID file, what you must do is insert
those "M:" melody lines into your SMFFTI command file. They must be placed under the
chord list line, eg:

$. . . | . . . | . . . | . . . $. . . | . . . | . . . | . . .

9 of 33

+####### +# +###+# +# +# +#+#+ +# + +# +# +#+# +# +#
Bb, Bb, Am, Am, Am, Gm, Gm, Gm, Gm, Gm, Gm, Gm, Gm, Am, Am, Am, Am
M: 4, 2, 3, 10, 3, 7, 0, 0, 7, 7, 5, 3, 0, 10, 3, 5, 10

Their presence will direct SMFFTI to output single notes to the .MID file, as per the melody
line, instead of chords.

SMFFTI automatically transposes notes in these melody lines to match the underlying
chord. That is, if you copy in a melody line that contains notes, for example, from a minor
(pentatonic) scale, but which are aligned with major chords, SMFFTI will correct the relevant
notes. The same applies to a major (pentatonic) melody aligned with minor chords.

This brings us to a second method of generating random melody lines: The -grm switch, eg:

SMFFTI.exe -grm smffti_rand_melodies.txt [-o]

This will simply output a whole bunch of "M:"-format melody lines - a thousand, in fact! - to
the specified output file. The contents, in part, look something like this:

Generic Randomized Melody lines. Generated by SMFFTI (-grm) at 220725130801

#Melody 0
M: 7, 9, 7, 0, 2, 2, 4, 7, 4, 2, 9, 9, 2, 2, 7, 4, 7, 0, 4, 9, 0, 9, 2, 2, 4, 0,
2, 4, 0, 2, 2, 2, 4, 0, 2, 2, 9, 2, 7, 0, 9, 0, 9, 9, 7, 4, 2, 4, 4, 0, 9, 0, 9,
0, 0, 0, 4, 7, 2, 0, 0, 2, 9, 7

#Melody 1
M: 9, 7, 4, 9, 4, 0, 0, 2, 9, 0, 0, 0, 9, 4, 4, 7, 9, 7, 2, 9, 4, 4, 2, 4, 0, 7,
9, 2, 2, 0, 4, 7, 9, 2, 7, 0, 7, 0, 0, 7, 4, 0, 4, 4, 4, 0, 2, 0, 9, 9, 0, 7, 9,
4, 4, 0, 0, 4, 0, 2, 7, 4, 2, 7

#Melody 2
M: 2, 2, 2, 4, 7, 0, 0, 9, 2, 4, 4, 7, 9, 2, 7, 7, 4, 0, 2, 4, 0, 7, 7, 9, 2, 4,
2, 7, 0, 0, 9, 2, 0, 0, 2, 4, 4, 9, 4, 9, 4, 2, 0, 4, 0, 0, 4, 7, 7, 9, 7, 7, 2,
7, 2, 0, 0, 2, 2, 0, 2, 2, 7, 9

Why a thousand melody lines? Well, why not! You can now try any of these out by simply
copying-and-pasting to your SMFFTI command file.

Some things to note:

1. The melody lines all use the major pentatonic scale but, as mentioned above,
SMFFTI will auto-correct when they are aligned with minor chords.

2. Each melody lines consists of 64 notes, which is likely enough for two bars at a
time. (Although SMFFTI allows for four-bar sequences on a single line, in terms of
text file editing, two bars is more manageable.) But you do not have to worry
about the extra notes in excess of the number of chords in your source SMFFTI
command file: They will be ignored. So, If your command file specified 12 chords
in a sequence, the last 52 notes of an inserted melody line will be ignored.

3. If you have Auto-Melody active in your command file (+AutoMelody=1), but you also

10 of 33

have the presence of "M:" melody lines, then those melody lines are fixed and will
be output to the .MID file, as well as the timestamped copy file that saves the
melody lines. This applies on a line-by-line basis; for example:

$. . . | . . . | . . . | . . . $. . . | . . . | . . . | . . .
+####### +# +###+# +# +# +#+#+ +# + +# +# +#+# +# +#
Bb(2), Am(3), Gm(6), Gm(2), Am(4)
M: 7, 9, 7, 0, 2, 2, 4, 7, 4, 2, 9, 9, 2, 2, 7, 4, 7, 0, 4, 9, 0, 9, 2, 2,
4, 0, 2, 4, 0, 2, 2, 2, 4, 0, 2, 2, 9, 2, 7, 0, 9, 0, 9, 9, 7, 4, 2, 4, 4,
0, 9, 0, 9, 0, 0, 0, 4, 7, 2, 0, 0, 2, 9, 7

$. . . | . . . | . . . | . . . $. . . | . . . | . . . | . . .
+###+###+### +#+# +# +###+### +# +###+###+# + +# +# +#
Bb(4), Am(3), Gm(3), Gm(2), Gm(4)

$. . . | . . . | . . . | . . . $. . . | . . . | . . . | . . .
+###+### +#+###+### +# +###+### +# + + +###+### +#+#
Bb(4), Am(3), Gm(2), Gm(3), Am(3)

$. . . | . . . | . . . | . . . $. . . | . . . | . . . | . . .
+###+#+# + +###+#+# + +#+# +####### +# +### +# + +# #
Bb(5), Ab(4), F(7)

The first two bars here include a fixed melody line, so Auto-Melody will not
generate another random melody in that case, but will, of course, do so for the
other three sets of two bars sequences.

For such fixed melody lines, mismatched minor/major notes will be corrected by
SMFFTI for the corresponding chords when output to the timestamped copy file.

At any time, of course, you can disable an inserted melody line by commenting out the "M:"
line, using a # character.

NOTE: The -grm method produces melody lines with no biasing towards
chord notes and which are also likely to contain a few bum notes when
aligned with suspended/diminshed chords (since the choice of notes could
be taken from the pentatonic scale). Thus, the Auto-Melody way of
generating randomized melodies is the preferred method, but we're keeping
the -grm feature for now.

Random Funk-Guitar Grooves

A slightly more specialized type of rhythmic pattern, tailored for the rapid strumming style of
funk guitar, is outlined here. It's operation is designed for use when +FunkStrum is enabled.
SMFFTI offers two methods for generating randomized funk-guitar-style grooves.

Method One

11 of 33

This method creates a random groove on the fly and inserts the generated result
directly into your output MIDI file. Simply replace the note position line with the
keyword "RandomGroove". So, instead of this:

$. . . | . . . | . . . | . . . $. . . | . . . | . . . | . . .
+############## +###### ####### +############## +###############
Em7(3), Am7

you have this:

$. . . | . . . | . . . | . . . $. . . | . . . | . . . | . . .
RandomGroove
Em7

Note also you should specify ONLY ONE chord name. Once you drop the MIDI file
into Ableton Live it's relatively simple to move the notes vertically to introduce other
chords.

As with normal note position lines, you can specify up to four contiguous rulers on
the same line.

Method Two

This method generates a complete SMFFTI command file, with all the required
parameters for funk strumming, along with a 8-bar randomized groove and pre-
determined chords (essentially in the key of Em). Thus you will have a "hard copy" of
the groove in case you want to copy or edit it.

This method also outputs multiple chords to demonstrate the groove more musically,
which you can edit manually in the generated command file.

To create such a command file, execute SMFFTI using the -rfg (Random Funk
Groove) switch, eg:

SMFFTI.exe -rfg rfgmidi.txt [-o]

This example creates a command file called rfgmidi.txt.

Again, the -o switch is optional but is necessary if you want to overwrite an already-
existing output file.

Every invocation of either method will generate a unique groove, but you might want to
finesse the results by stitching together bits of multiple versions in order to create the most
funkadelic groove ever!

12 of 33

Automatically-Generated Chord Progressions

For the lazy, or those who struggle to come up with nice chord progressions, there is the
Auto-Chords feature. Based on a few parameters specified in the SMFFTI command file,
Auto-Chords will create a chord progression for you. The progression will contain randomly-
chosen chords set to a rhythm pattern, which is also randomly-generated.

Your SMFFTI command file only needs to specify a single bar and a note that represents the
key for the chord progression. For example:

$. . . | . . . | . . . | . . .
+###############################
Gm

This says that you want a chord progression in the key of G Minor.

If you want the possibility of modal interchange, you can specify parameter
+ModalInterchangeChancePercentage, giving it a value between 0 and 100. Modal
interchange defined here means chords from the corresponding (or 'opposite') minor/major
key. For example, if your main key is G Minor, then modal interchange will use chords from
G Major. Similarly, if your main key is Eb Major, modal interchange will use chords from Eb
Minor. Thus, instead of a choice of seven primary chords for your generated chord
progression, SMFFTI will now select from a possible fourteen primary chords. If
+ModalInterchangeChancePercentage is set to 0 then Modal Interchange will not occur; if it
is set to 100, then all the chords will be from the 'opposite' key (which is a bit pointless!). You
probably only want occasional modal interchange, so perhaps set a value of 10 for
+ModalInterchangeChancePercentage.

Auto-Chords is invoked by using the -ac switch in your SMFFTI command. For example:

SMFFTI.exe -ac mymidi.txt mymidi_ac.txt [-o]

Note the -ac switch. In this mode a .MID file is not produced, but rather, another SMFFTI
command file which is very similar to the input command file, except it contains the
generated chord progression and rhythm pattern.

(Note, again, the -o option to automatically overwrite an existing version of the output file.)

Next, you use the generated command file to create a .MID file, eg:

SMFFTI.exe mymidi_ac.txt mymidi_ac.mid [-o]

Then load the .MID file into Ableton Live and see how it sounds.

Note that it is almost certain that the chord progression and rhythmn pattern will need
customizing. The Auto-Chords algorithm is limited and able only to suggest something that
can be used as a starting point for further development. However, it can save you time and

13 of 33

help your creativity. Nevertheless you might need to run SMFFTI several times to discover a
progression/rhythm that works for you.

By default you will get a four-bar chord progression. However, you can specify a two-, four-,
eight- or sixteen-bar progression by including the +AutoChordsNumBars parameter in your
SMFFTI command file, eg:

+AutoChordsNumBars=16

Auto-Chords Customization

Okay, so the default settings in SMFFTI attempt to make Auto-Chords work without user-
intervention, but these settings can all be overridden. So let's talk about the Auto-Chords
algorithm a bit more so you better understand how to control it. Regarding the randomness
of the generated chord progression there are three aspects to consider:

1. Major/Minor/Diminished Chord Bias.
2. Chord Type Variations.
3. Note Length and Alignment.

These are all discussed below.

Major/Minor/Diminished Chord Bias

Your chosen key will, of course, consist of seven chords: three major, three minor and
one diminished. It is thus a question of how you would like these seven chords to
appear in your chord progression to get a pleasing balance. (For a start, it is unlikely
that you will want too many instances - if any - of the diminished chord because it
usually sounds awful!)

For a more cheery sound, you will prefer more major chords; for melancholy, more
instances of minor chords. SMFFTI provides parameters that allow you to balance
occurrences of major, minor and diminished chords. For example, you can, if you
wish, exclude the possibility of any minor chords. Or major chords; or diminished.
This is all achieved using the +AutoChordsMinorChordBias and
+AutoChordsMajorChordBias parameters, and is best explained with an example:

+AutoChordsMinorChordBias=22, 44, 32
+AutoChordsMajorChordBias=32, 32, 32

Now, pay attention...

If your chosen key is a minor key, then +AutoChordsMinorChordBias is relevant
(otherwise, for a major key, +AutoChordsMajorChordBias applies).

For a minor key (where parameter +AutoChordsMinorChordBias applies): The three

14 of 33

numerical parameters specify a percentage value - ie. a maximum combined total of
100 - that specify a bias toward, respectively, (1) the root chord, (2) the other two
minor chords in the key and, (3) the three major chords. If the total of these values is
less than 100, then the remainder percentage will be allotted to the diminished
chord.

So, in this example, if you have specified a minor chord as the key (eg. Gm) there is a
22% chance that the chord progression will contain the root chord (Gm). There is also
a 44% chance of the other two minor chords (Cm, Dm) occurring; and, a 32% chance
of the major chords (Bb, Eb and F) occurring.

Since 22% + 44% + 32% = 98%, it means we have 2% chance of the diminished chord
(A dim, or its variants) appearing. That is, any percentage left over is allotted to the
diminished chord.

The same principle applies if you have specified a major chord as your key:
Parameter +AutoChordsMajorChordBias will apply. The three numerical parameters
specify a percentage value that specify a bias toward, respectively, (1) the root chord,
(2) the other two major chords in the key and, (3) the three minor chords. Again, if the
total of these values is less than 100, then the remaining percentage will be allotted
to the diminished chord. In the example parameter above, there will be an equal
chance (32%) of the root chord (eg. Bb), the other two major chords (Eb, F) and the
three minor chords (Gm, Cm, Dm) occurring. 32% + 32% + 32% = 96%, so there is a
4% chance of the diminished chord occurring.

NB. All the above is with respect to the basic chord triads, but Auto-Chords can
enhance these (by default or with parameters) by adding additional notes - see
Chord Type Variations below.

Chord Type Variations

By this we mean all the basic triads, plus the chords that add extra notes, or shift
existing notes, to enhance the basic triads that constitute the major/minor/diminished
chords. With respect to Auto-Chords, there are seventeen chord type variations:

• Major
• Dominant 7th
• Major 7th
• Dominant 9th
• Major 9th
• Add 9
• Sus 2
• 7 Sus 2
• Sus 4
• 7 Sus4
• Minor

15 of 33

• Minor 7th
• Minor 9th
• Minor Add 9
• Diminished
• Diminished 7th
• Half-diminished

So, for example, a basic C major triad could be randomly rendered as a Dominant
7th, Major 7th, Dominant 9th, Major 9th or Add 9 (five chord variations).

Similarly, a basic C minor triad could be randomly rendered as a Minor 7th, Minor 9th
or Minor Add 9 (three chord variations).

Regarding suspended chords - which are not, it seems, associated per se with major
or minor chords - SMFFTI arbitrarily works (in accordance with the default or user-
specified parameters that influence random selection) by converting major chords to
suspended chords. Suspended chords, when used sparingly, sound great when
inserted as musical punctuation.

Even more sparingly used are the diminished chords. The plain diminished chord
sounds pretty awful at the best of times but, interestingly enough, the diminished 7th
and the half-diminished can sound quite nice. So, for Auto-Chords, SMFFTI will never,
by default, select a basic diminished and, unless specified by the user, will always
randomly choose equally between a diminished 7th and a half-diminished.

Thus, bearing in mind all the above-mentioned, SMFFTI provides a total of seventeen
parameters that control the chances of each of the above-listed chord types being
chosen for the generated chord progression. These parameters (shown with
example values) are:

Major chords (and suspended)
+AutoChords_CTV_maj = 1000
+AutoChords_CTV_7 = 100
+AutoChords_CTV_maj7 = 150
+AutoChords_CTV_9 = 50
+AutoChords_CTV_maj9 = 50
+AutoChords_CTV_add9 = 200
+AutoChords_CTV_sus2 = 15
+AutoChords_CTV_7sus2 = 15
+AutoChords_CTV_sus4 = 10
+AutoChords_CTV_7sus4 = 10

Minor chords
+AutoChords_CTV_min = 1000
+AutoChords_CTV_m7 = 250
+AutoChords_CTV_m9 = 50
+AutoChords_CTV_madd9 = 150

Diminished chords
+AutoChords_CTV_dim = 0
+AutoChords_CTV_dim7 = 1

16 of 33

+AutoChords_CTV_m7b5 = 1

(NB. CTV = Chord Type Variation)

The values you supply are relative and allow you to set a proportional bias across the
chord type variations. The maximum value that can be specified is 100,000. You do
not have to specify any of these values - SMFFTI uses the above values as defaults.

Note that the chord types are categorised by Major, Minor and Diminished, and the
relative values specified for one category do not affect the bias in the other two
categories. For example, if you were to set +AutoChords_CTV_m7 = 100000 it would
mean only that, when a minor is output it will most likely be a Minor 7th; it would not
affect the bias of major or diminished chords. That is why, for diminished chords, we
need only specify very small values to accomplish the bias toward Diminished 7th
and Half-diminished.

Note Length and Alignment

This is all about the rhythm of the chord progression: Where the notes start and end
and the gaps in between.

Note length can randomly be between an 1/8th and a whole note (ie. range 4 to 32
1/32nd notes). Notes that are half-note or smaller are considered by SMFFTI as short
notes; any notes larger are considered long notes. You can set a bias toward shorter
or longer notes using the +AutoChordsShortNoteBiasPercentage parameter. For
example:

+AutoChordsShortNoteBiasPercent = 50

will tell SMFFTI to use a 50/50 chance of outputting short notes. If
+AutoChordsShortNoteBiasPercentage is set to 100, all notes output will be half-
notes or shorter. Thus, you can bias note length for more rhythmic patterns (shorter
notes) or pad/harmony patterns (longer notes).

If you do not specify a value for +AutoChordsShortNoteBiasPercent, SMFFTI uses a
default value of 35, meaning about a one-in-three chance of shorter notes.

Regarding the length of the gaps between the notes, this is determined by the fact
that SMFFTI will always align the notes - randomly - on 1/8th, 1/4 or half-notes. It uses
a fixed bias slightly in favour of 1/4-note alignment over 1/8th note alignment; with
only occasional half-note alignment. This aspect of the algorithm is fixed and, at this
time, cannot be modified by the user.

17 of 33

Random Chord Replacement

The Random Chord Replacement (RCR) facility allows you to selectively replace individual
chords in a progression in a SMFFTI command file. Chords that are marked for replacement
will be substituted with randomly chosen chords. This feature thus allows you to audition
different chords - randomly chosen - as part of a progression you are developing.

RCR has been implemented to augment the use of Auto-Chords. For example, if you have
used Auto-Chords to create a progression, it's likely that some of the chords will not sound
harmonious, and the idea is that RCR will provide a simple means of substituting the "bad"
chords with better ones.

RCR is enabled by using command parameter +RandomChordReplacementKey, which
requires a chord that specifies a key, eg.

+RandomChordReplacementKey = Gm

NB. If +RandomChordReplacementKey is specified, it will be ignored if you are executing
SMFFTI in Auto-chords (-ac) mode.

With RCR enabled, you now indicate chords in your progression which will be replaced with
a randomly-chosen chords from the key specified by the +RandomChordReplacementKey
parameter (in this example G Minor). You do this by prefixing chord names with a question
mark. For example:

$. . . | . . . | . . . | . . . $. . . | . . . | . . . | . . .
+############## +############## +############## +###############
Cm, ?Am, F, G

The A Minor chord will be changed to another randomly-selected chord. The replacement
chord is what is output to your MIDI file but, but SMFFTI keeps a record of the original and
replacement chords, by updating the SMFFTI command file. After running SMFFTI for the
above example, the command file will be changed to something like this:

$. . . | . . . | . . . | . . . $. . . | . . . | . . . | . . .
+############## +############## +############## +###############
Cm, ?Eb, F, G
#Cm, ?Am, F, G

In this example, A Minor has been replaced by Eb Major. Note that the original chord
progression line is commented out and a new chord progression line inserted, which is
what is reflected in the MIDI output file. In other words, a history of the chord progression
iterations is kept (in reverse order, ie. the latest is listed first). Note, too, that the replacement
chord is still prefixed with the question mark; this is so that, if you don't like replacement
chord, you simply run SMFFTI again and yet another chord progression line will be inserted,
with the previous one being commented out, eg.:

$. . . | . . . | . . . | . . . $. . . | . . . | . . . | . . .

18 of 33

+############## +############## +############## +###############
Cm, ?Dm, F, G
#Cm, ?Eb, F, G
#Cm, ?Am, F, G

This log of the attempted chord progressions is handy for reference - you can see what
worked and what didn't. When you are happy with a result, you simply disable RCR (by
commenting out - or deleting - the +RandomChordReplacementKey parameter and
removing the question marks (you might also tidy up the command file by removing the list
of unsuccessful chord progressions.)

If +RandomChordReplacementKey is not enabled, all question mark prefixes are ignored.

The selection of chords for replacement is based on the same algorithm as Auto-Chords.
That is, you use the same command parameters as you would for Auto-Chords that set a
bias for choice of chord and chord type variations, eg. +AutoChordsMinorChordBias,
+AutoChordsMajorChordBias.

Similar to Auto-Chords, you can enable modal interchange, so that the selection of
substitute chords can also include chords from the corresponding (or 'opposite')
major/minor key. You do this by setting parameter +ModalInterchangeChancePercentage.

RCR checks any history lines to avoid selecting chords that have already been tried before
(and rejected, hence they exist in the history). This speeds up your workflow since it avoids
needless repetition of effort. Only when all possible chords and their allowed variations
have been tried will RCR begin selecting them again.

NB. Regarding Auto-Rhythm, if your source file is one that has RCR enabled
(+RandomChordReplacementKey is active and chord names are prefixed with '?'), be aware that
the output file will contain modified chords. This is likely not what you want. Therefore, you
should probably ensure that RCR is disabled before you use Auto-Rhythm.

MIDI-to-SMFFTI Conversion

Using this feature you can convert a chord progression in a MIDI file into SMFFTI text
format. The purpose of this facility is to allow you to perform manual customization of
chords in Ableton Live, and then preserve the result in SMFFTI format. This customized
chord progression might be required, for example, as the basis for mulitple iterations of
Auto-Rhythm or Auto-Melody.

To emphasize this, suppose you used a combination of Auto-Chords and Random Chord
Replacement to create a working chord progression in a MIDI file. Inside Ableton Live, you
are likely going to chop and change the chord positions and length to come up with a nice
composition. Once this creative process is complete, you can consider the finished chord
progression to be the backbone, as it were, of a musical section; and from which you might
use SMFFTI to further generate additional rhythm patterns and melodies. Therefore, you will

19 of 33

need to save this 'master' chord progression in SMFFTI format.

The MIDI-to-SMFFTI operation is achieved using the -m switch. For example:

SMFFTI.exe -m mymidi.mid chords.txt [-o]

If the output file already exists, the operation will not be allowed unless you specify the
override (-o) option. The override option, in this case, will cause the output to be appended
to the existing file, rather than completely overwrite it.

The text output will consist of the essential SMFFTI chord progression data, ie. ruler, note
positions and chord names, eg.:

$. . . | . . . | . . . | . . . $. . . | . . . | . . . | . . .
+############## +############## +############## +##############
F, G, Am, C

The specified output file is expected, of course, to be a text file, but it might contain any text
- SMFFTI does not care. The chord progression data (interpreted from the MIDI file) is
always appended to the existing file. However, significantly, if the file is a SMFFTI command
file, the MIDI-to-SMFFTI operation will replace all existing chord progression data with the
new data. This allows you to quickly update your original SMFFTI command file with
modified chord progression data without need to perform manual editing. This only
happens if the specified file is perceived to be a SMFFTI command file.

Your source MIDI file must be a one-channel, one-track file - the type of file that is created
when you export from Ableton Live. It must also be meaningful, in the sense that it contains
actual chords, ie. typically, at least three notes. Valid chords are those eighteen chord types
that are listed in the Basic Usage section of this document.

The notes of the chords do not have to be quantized, or precisely aligned; but the length of
each chord will be determined by the length of the first-played note of the chord.

All chord positions will be quantized to 1/32nd notes for the sake of the SMFFTI text format.

NB. A note about Diminished 7th chords. Because these chords use four notes that are
each three semitones apart, they are somewhat ambiguous. For example, Adim7 (A-C-Eb-
Gb) uses the same notes as Cdim7 (C-Eb-Gb-A) - they are just in a different order. Since
SMFFTI does not concern itself with precise music theory as such, it interprets such chords
as simple transpositions. It will be observed, therefore, that a MIDI file containing an Adim7
chord will, when written to SMFFTI format using this function, will be labelled as Cdim7. Do
not be alarmed - it's just the simple-mindedness of SMFFTI!

Set Parameter Operation

It is possible to set or change the value of a SMFFTI file parameter using the Set Parameter

20 of 33

command. The Set Parameter operation is invoked using -p switch, followed by a valid
parameter definition. For example:

SMFFTI.exe -p "+AutoMelody = 1" chords.txt

This command tells SMFFTI to update the chords.txt file with the +AutoMelody parameter,
setting it to 1.

If chords.txt already has the specified parameter defined, it will update the value to the
one specified in the command. Otherwise, it will add the parameter as a new definition,
placing it at the end of all existing paramater data, and just before the first chord
progression ruler line.

The purpose of Set Parameter is to facilitate command batch (Windows .bat) files. For
example, a command file might contain the following:

copy /y chords.txt melody.txt
smffti.exe -p "+AutoMelody = 1" melody.txt
smffti.exe -ar melody.txt melody_r.txt -o
smffti.exe melody_r.txt melody_r.mid -o

This command file copies chords.txt to melody.txt, and then sets the value of
+AutoMelody in file melody.txt. This allows the remaining commands to proceed without
you needing to manually edit melody.txt first. Using the original chords.txt file, this
command sequence results in the creation of the MIDI file melody_r.mid, which contains a
randomly-generated melody line - all accomplished in a single step, as it were.

This use of Set Parameter enhances the possibility of 'programming' SMFFTI to execute a
series of commands without manual user intervention, allowing rapid regeneration of output
files.

SMFFTI Command File Wizard

The SMFFTI Command File Wizard is an easy way of allowing you to create a basic
command file, by asking you a few simple questions. To invoke the wizard (using a
Windows command file window, of course) enter this command:

SMFFTI.exe -w

Note the -w switch. SMFFTI will then present a very simple menu, with a single option:

1. Create SMFFTI Command File

Choose option 1 and it will present you with the first question:

1. Name of output file <mySMFFTIFile.txt>?

21 of 33

Enter your answer and press RETURN, or accept the default answer shown in angled
brackets by simply pressing RETURN. The next question will then be presented.

Here's the full dialog:

A few points about this wizard dialog...

When entering the chord progression, use a comma-separated list, and make sure the
chord names follow the naming convention shown in the Basic Usage section of this
document (eg. C, Cm7, Cdim7). You can enter any number of chords - within reason;
perhaps no more than sixteen. It works on the basis of one bar per chord specified, so four
chords = a four-bar progression.

Randomized velocity means the individual notes of the chords will have slightly different
velocities.

Offset note positions means that the individual notes of the chords will each start and end
at different points, very slightly offset from their notional position.

You can use these commands to navigate the dialog:

/q Quit the dialog.
/b Go back to the previous question.
/<n> Go to the question indicated by the number specified, eg. /3.
/l Go to the latest question requiring input. For example, you may be on

question 5, and decide to go back to question 2 by entering /2. After that, you
can return to question 5 by entering /l.

After completing all the questions it will indicate that the file is being created; or, reporting
any errors that may occur.

Having created the SMFFTI command file you can then inspect/customize it using your text
editor, prior to using it as input for one of SMFFTI's main operations.

22 of 33

Command File Parameter Reference

Command file parameters are indicated using a plus sign followed by the parameter name,
an equals sign, and the parameter value. For example:

+TrackName=My Little Tune

$. . . | . . . | . . . | . . . $. . . | . . . | . . . | . . .
+############## +###### ####### +############## +###############
C, Am, F, G

None of the parameters are mandatory, since defaults are applied.

Following is a reference guide to all the parameters, in alphabetical order.

+AllMelodyNotes

Valid values: 0, 1. When set to 1, SMFFTI will output to the MIDI file all possible notes
that could be used as a melody. The output thus appears as a "chord", consisting of
the underlying chord notes plus, if applicable, some possible extra notes from the
pentatonic scale. The purpose of this feature is to allow you to see, in the MIDI file,
the full choice of notes suitable for a melody. Typically, you will disable all these
notes in your DAW (eg. in Ableton Live, by selecting them and pressing 0 (zero)), and
then enable individual notes to manually create a melody. In other words, the full set
of notes, expressed as a chord, provides you with an easy-to-see template.

When +AllMelodyNotes is set, the following parameters are ignored:

+AutoMelody
+RandNoteStartOffset
+RandNoteEndOffset

+Arpeggiator

Number in range 0 - 13. If set to zero (or parameter is omitted) no arpeggiation is
applied. Values in the range 1 - 13 will arpeggiate the output MIDI. The 13 arpeggiator
types mirror those available in the Ableton Live Arpeggiator MIDI device, according
to the following:

1. Up
2. Down
3. Up Down
4. Down Up
5. Up & Down
6. Down & Up
7. Converge
8. Diverge
9. Converge & Diverge

23 of 33

10. Pinky Up
11. Pinky UpDown
12. Thumb Up
13. Thumb UpDown

NB. Not all of the Ableton Live Arpeggiator types have been implemented, eg. there
is no Play Order or Random arpeggiator types.

If arpeggiation is enabled, the following are disabled: +RandNoteStartOffset
+RandNoteEndOffset and +NoteStagger.

+ArpGatePercent

Range 1 - 200. Default 50. This is a percentage value. 50% means half the
arpeggiated note length (similar to the Ableton Live Arpeggiator device).

+ArpOctaveSteps

Range -6 to 6. Sets the number of times the pattern is transposed. The pattern will
play once at its original transposition and then in successively higher or lower
octaves according to the value specified. (Similar to the Steps value in the Ableton
Live Arpeggiator device.)

+ArpTime

Valid values: 1, 2, 4, 8, 16, 32. Default (if omitted) is 8. The value is applied as a
fraction, eg. +ArpTime=8 means 1/8th.

+AutoChords_CTV_<type>

Applies only when Auto-Chords mode (-ac) is used. For setting the chance of Chord
Type Variations (CTV) occurring, eg. how often a Cm chord might be converted to
Cm7.

This is a group of seventeen parameters, and <type> can be one of the following
(with its chord type shown in parentheses):

• maj (Major)
• 7 (Dominant 7th)
• maj7 (Major 7th)
• 9 (Dominant 9th)
• maj9 (Major 9th)
• add9 (Add 9)
• sus2 (Suspended 2nd)
• 7sus2 (7th Suspended 2nd)
• sus4 (Suspended 4th)
• 7sus4 (7th Suspended 4th)

24 of 33

• min (Minor)
• m7 (Minor 7th)
• m9 (Minor 9th)
• madd9 (Minor Add 9)

For example settings, see the Full Example Command File section at the end of this
document. The values shown there are also the default values if these parameters
are not specified.

Each of these parameters takes a numeric value (range 0 - 100000). The collective
values of all the parameters defines the bias of the chances of the various chord type
variations being used.

Theses parameters are categorised by Major (10, including the suspended chords),
Minor (4) and Diminished (3), and the relative values specified for one category do
not affect the bias in the other two categories, so the relative magnitude of the
values can be different for each of the three categories.

+AutoChordsMajorChordBias

Applies only when Auto-Chords mode (-ac) is used. For chord progressions in a
major key, it sets a bias, respectively, toward (1) the root chord, (2) the other two
major chords in the key and (3) the three minor chords in the key. The values are
expressed as a percentage, so the total value of the three values must not exceed
100. If the total value is less than 100, the remaining percentage is allotted to the
diminished chord of the key. Example:

+AutoChordsMajorChordBias=22, 42, 32

Here, if the key of the chord progression is Bb, there is a 22% chance of the Bb
chord being used, a 42% chance of Eb or F being used, and a 32% chance of Gm,
Cm or Dm being used. The total percentage value is 96 (22 + 42 + 32), so there will a
4% chance of A dim being used.

If not specifed, the default value is 22, 42, 32.

+AutoChordsMinorChordBias

Applies only when Auto-Chords mode (-ac) is used. For chord progressions in a
minor key, it sets a bias, respectively, toward (1) the root chord, (2) the other two
minor chords in the key and (3) the three major chords in the key. The values are
expressed as a percentage, so the total value of the three values must not exceed
100. If the total value is less than 100, the remaining percentage is allotted to the
diminished chord of the key. Example:

+AutoChordsMajorChordBias=22, 42, 32

25 of 33

Here, if the key of the chord progression is Gm, there is a 22% chance of the Gm
chord being used, a 42% chance of Cm or Dm being used, and a 32% chance of Bb,
Eb or F being used. The total percentage value is 98 (22 + 42 + 32), so there will a
4% chance of A dim being used.

If not specifed, the default value is 22, 42, 32.

+AutoChordsNumBars

Applies only when Auto-Chords mode (-ac) is used. Determines the length, in bars, of
the output chord progression. Valid values: 2, 4, 8 or 16. Default: 4.

+AutoChordsShortNoteBiasPercent

Applies only when Auto-Chords mode (-ac) is used. Range 0 - 100. Determines the
chance of shorter notes (1/8th notes up to half-note) being output. If set to zero, only
longer notes (17/32nds up to a whole note) will be output. If set to 100, only shorter
notes will be output. Default: 35.

+AutoMelody

When enabled (+AutoMelody=1) the .MID file created will contain a randomized melody
and the chord and generated melody data is saved to a timestamped copy of the
original command file so that the melody lines can be replicated elsewhere. The
melody data is saved in text format as lines beginning with "M:", underneath the
chord list line.

+AutoMelodyDontUsePentatonic

Applies to Auto-Melody. When enabled, ie. +AutoMelodyDontUsePentatonic=1, Auto-
Melody will not use any notes from the underlying chord's pentatonic scale.
(Pentatonic scale notes will only ever be output for major and minor chords, and not
suspended or diminished chords.)

+AutoRhythmConsecutiveNoteChancePercentage

Applicable to Auto-Rhythm mode (-ar switch). Percentage chance of consecutive
notes. Valid range 0 - 100. Example:

+AutoRhythmConsecutiveNoteChancePercentage=35

A zero value means no consecutive notes - there is always a gap between notes.

A value of 100 means virtually no gaps - it will be almost a thick glut of notes. We say
virtually because, as already-mentioned, no notes can commence on even-
numbered 32nds, so 32nd-note gaps are quite likely.

The default value is 25, ie. modest likelihood of consecutive notes.

26 of 33

+AutoRhythmGapLenBias

Applicable to Auto-Rhythm mode (-ar switch). Sets a bias of the chances of each
possible gap length between notes. Similar parameter structure and operation to
+AutoRhythmNoteLenBias. Default values: 0, 0, 0, 4, 8, 1.

+AutoRhythmNoteLenBias

Applicable to Auto-Rhythm mode (-ar switch). Sets a bias of the chances of each
possible note length. Possible note lengths: whole note, half note, 1/4 notes, 8th
notes, 16th notes, 32nd notes. Best illustrated by example:

+AutoRhythmNoteLenBias=1, 2, 3, 4, 5, 6

From left-to-right, longest note first: The "1" value refers to whole notes, the "6" refers
to 32nd notes. In this example, SMFFTI is six times more likely to output 32nd notes
over whole notes; and four times more likely to output 8th notes over whole notes.

Comma-separated list of six values, each value range 0 - 1000. Default values: 0, 0, 4,
8, 4, 2.

+BassNote

A value of 1 causes the program a output an additional root note an octave lower.
Omit if bass note not required, or specify +BassNote=0.

+FunkStrum

Range 0 - 6. This is an attempt to facilitate a kind of funk strumming dynamic. It kind
of works, as long as you've got a decent-sounding guitar instrument.

What this does is apply note stagger such that, for "downstrokes" the notes are
staggered from low to high (to simulate a micro-delay between the strings as they
are strummed downward); and the opposite for "upstrokes", notes staggered from
high to low. The definition of downstroke and upstroke is simply alternate 1/16th
notes: Odd 1/16ths are downstrokes, and even 1/16ths are upstrokes. Small values are
appropriate: +FunkStrum=2 seems about the best.

NB. To avoid these somewhat tight notes running into each other, the note length is
shortened slightly.

If +FunkStrum is enabled it disables the following: +Arpeggiator, +RandVelVariation,
+RandNoteStartOffset, +RandNoteEndOffset.

NOTE: Funk guitar is all about the strumming groove, but creating a groove manually
- either in a DAW or by editing a SMFFTI text command file - is quite tedious. So
check out the section Random Funk Grooves below to see a feature of SMFFTI that

27 of 33

allows you to geneate randomized funk strumming grooves.

+FunkStrumUpStrokeAttenuation

Applicable only if +FunkStrum active. Range 0.1 to 1.0. Default if omitted is 1.0. This
allows you to attenuate the velocity of "upstrokes" (even 1/16th notes), the idea being
that funk guitar technique often means much reduced volume - frequently muted -
for upstrokes. Unfortunately, there's no way we can magic up muted strums, so this
will have to do.

A value of 1.0 does not attenuate, while 0.1 drops the velocity to a tenth of the
nominal velocity.

+FunkStrumVelDeclineIncrement

Applicable only for +FunkStrum. Range 0 - 20. Default if omitted is 5. +FunkStrum
applies note stagger, and what this does is reduce the velocity of each successive
note by the amount specified. It attempts to emulate the likelihood that, when a
guitar is strummed, each successive string will be struck with less velocity. It's my
unproven theory, nothing more.

For example, if the base velocity is 80 and +FunkStrumVelDeclineIncrement=10, the first
note velocity will be 80, the second note will be 70, the third will be 60, etc.

+ModalInterchangeChancePercentage

To enable modal interchange for Auto-Chords (-ac mode) or Random Chord
Replacement. Valid range 0 to 100, representing a percentage chance that chord
choice will come from the corresponding (or 'opposite') major/minor key. A value of
zero means never use modal interchange; a value of 100 means always use chords
from the 'opposite' key.

For example, if your chosen key for randomized chords is G Minor, modal
interchange will also enable chords to be selected from G Major. Similarly, if your
specified key is Eb Major, modal interchange will also use chords from the key of Eb
Minor.

For occasional invocation of modal interchange, perhaps set
+ModalInterchangeChancePercentage to a value of 10. Default if not specified: 0.

+NoteStagger

Range -32 to 32. This will result in the start position of successive notes of the chord
being staggered by the amount specified. A positive value starts from the lowest
note, while a negative value starts from the highest note. Either way, the first note is
not staggered. A zero value results in zero stagger. Typically, values will be small, say,
3, to simulate perhaps a guitar strum. End positions of notes are unchanged. A non-
zero +NoteStagger value disables +RandNoteStartOffset and +RandNoteEndOffset.

28 of 33

+OctaveRegister

Number in range 0 to 7. Default 3. Determines the general register of where the
notes of the chords will be placed. When no downward transposition occurs, it
effectively specifies the lowest octave for all notes in the chord progression (except
the optional bass note).

+RandNoteEndOffset

Adds some randomization to the end position of each note. Range 0 - 32.

+RandNoteOffsetTrim

By default, if you have applied +RandNoteStartOffset and/or +RandNoteEndOffset, the
MIDI output file will contain an additional bar at the beginning to accommodate notes
which start before their nominal start position; or an extra bar at the end to
accommodate notes which end after their nominal end position. By setting this
parameter, ie. +RandNoteOffsetTrim=1, the program will not append these additional
bars, but will ensure that, for the first bar, +RandNoteStartOffset will not be applied;
and for the last bar, +RandNoteEndOffset will not be applied.

+RandNoteStartOffset

Adds some randomization to the start position of each note. Range 0 - 32. This can
result in the note starting either before or after its nominal position. Typically this will
be quite small, eg. +RandNoteStartOffset=3. Useful for "humanizing" piano chords,
perhaps.

+RandomChordReplacementKey

Enables Random Chord Replacement (RCR), and also defines the key from which
replacement chords are randomly selected. For example:

+RandomChordReplacementKey = Gm

+RandVelVariation

Use this to add some randomization to the velocity of each note. For example, if the
base velocity is 80, and you specify +RandVelVariation=20, the velocity of each note
will randomly be in the range 70 - 90.

+RootNoteOnly

Possible values: 0 or 1. A value of 1 causes SMFFTI to output only the root notes of
the chord. This can be handy for auditioning auto-generated rhythms for, say, a
bassline. Starting with a such root-note-only MIDI file, you can then, relatively easily,
transpose notes to create a melody.

29 of 33

+TrackName

Expects some text. When specified, this name is what the clip will be labelled with
when you drag it into Ableton Live. If omitted, clip is named as "Made by SMFFTI".

+TransposeThreshold

Number in range 0 to 48. Default 48. This dictates how notes in a chord (including
the root note) will be downward transposed. It specifies a number of semitones
above the note C for OctaveRegister. Notes beyond this will be transposed
downward. For example, if +OctaveRegister=3 and +TransposeThreshold=11, it means
that any notes in the chord progression that are C4 or above will be transposed
downward to below C4. This example demonstrates how to keep all chord
progression notes within a one octave register, ie. C3 to B3*. Such transposition is
also applied for Auto-melody, to keep melody notes within a given register.

*Using the Ableton Live designation of octave numbers.

+WriteOldRuler

In the case of SMFFTI modes that create a modified version of the command file, eg.
Auto-Rhythm, the style of ruler that is written to the output file may be specified.
From version 0.4 of SMFFTI, the default is the new style ruler, ie.:

$. . . | . . . | . . . | . . .

However, if you prefer the old style of ruler to be output, ie.:

[......|.......|.......|.......]

you can use the command file parameter +WriteOldRuler and set its
value to one, ie:

+WriteOldRuler = 1

This is purely a cosmetic feature to assist you should you wish to further
customise the modified file: You can choose the style of ruler that best
helps you to position notes.

+Velocity

Use this to set the velocity of all notes. Range 1 - 127. If omitted, velocity defaults to
80.

30 of 33

System Parameter Reference

Command files may also contain system parameters, which may be written or updated by
SMFFTI to maintain certain status values between executions of SMFFTI. Such parameters
are not intended to be amended by the user. System parameters are indicated as such with
the prefix SYS_.

+SYS_RCRHistoryCount

Used by SMFFTI to track the Random Chord Replacement (RCR) history lines that
appear (as comment lines) underneath the chord name list in the chord progression
data section. It refers to the number of history lines that RCR will check in order to
avoid choosing chords that have already been previously used. This parameter is
updated whenever RCR is invoked.

31 of 33

Full Example Command File

It may be useful to include all the parameters in your input file, even if you don't enable
them. It helps to see what options are available. Comments are also encouraged to
annotate your chord progression. Comment blocks - using (# and #) - are handy for
temporarily disabling chord sections.

Here's a complete sample file:

SMFFTI Input File: mymidi.txt

+TrackName=My Test MIDI Sequence

+BassNote=1
+RootNoteOnly=0

+Velocity=70
+RandVelVariation=25

+OctaveRegister=3
+TransposeThreshold=11

+RandNoteStartOffset=2
+RandNoteEndOffset=2
+RandNoteOffsetTrim=1

+NoteStagger=0

+Arpeggiator=0
+ArpTime=8
+ArpGatePercent=50
+ArpOctaveSteps=0

#+AutoMelody=1
#+AutoRhythmNoteLenBias=0, 0, 8, 16, 16, 4
#+AutoRhythmGapLenBias=0, 0, 0, 4, 8, 1
#+AutoRhythmConsecutiveNoteChancePercentage=25

+FunkStrum=0
+FunkStrumUpStrokeAttenuation=0.5
+FunkStrumVelDeclineIncrement=8

Parameters relating to Auto-Chords (-ac) feature.
#
+AutoChordsNumBars=4;
+AutoChordsMinorChordBias=22, 42, 32
+AutoChordsMajorChordBias=22, 42, 32
+AutoChordsShortNoteBiasPercent=35
#
Chance of Chord Type Variations (CTV) for Major chords.
Note that you can specify a chance of suspended chords
replacing a major chord.
#
+AutoChords_CTV_maj = 1000
+AutoChords_CTV_7 = 100

32 of 33

+AutoChords_CTV_maj7 = 10
+AutoChords_CTV_9 = 10
+AutoChords_CTV_maj9 = 10
+AutoChords_CTV_add9 = 80
+AutoChords_CTV_sus2 = 15
+AutoChords_CTV_7sus2 = 15
+AutoChords_CTV_sus4 = 10
+AutoChords_CTV_7sus4 = 10
#
Chance of Chord Type Variations (CTV) for Minor chords
+AutoChords_CTV_min = 1000
+AutoChords_CTV_m7 = 100
+AutoChords_CTV_m9 = 10
+AutoChords_CTV_madd9 = 10
#
Chance of Chord Type Variations (CTV) for Diminished chords.
NB. Zero chance of plain old dim, theyt generally rubbish;
instead, equal chance of Diminihed 7th or Half-diminished.
+AutoChords_CTV_dim = 0
+AutoChords_CTV_dim7 = 1
+AutoChords_CTV_m7b5 = 1

+WriteOldRuler = 0

#+RandomChordReplacementKey = Gm
#+ModalInterchangeChancePercentage=10

$. . . | . . . | . . . | . . . $. . . | . . . | . . . | . . .
+############################## +##############################
Bb, F

$. . . | . . . | . . . | . . . $. . . | . . . | . . . | . . .
+############################## +##############################
Dm, C

$. . . | . . . | . . . | . . . $. . . | . . . | . . . | . . .
+############################## +##############################
G, Bb

$. . . | . . . | . . . | . . . $. . . | . . . | . . . | . . .
+############################## +##############################
F, D

33 of 33

	Introduction
	Basic Usage
	Automatically-Generated Rhythm Patterns
	Automatically-Generated Melodies
	Specifying a Fixed Melody
	Random Funk-Guitar Grooves
	Automatically-Generated Chord Progressions
	Auto-Chords Customization
	Random Chord Replacement
	MIDI-to-SMFFTI Conversion
	Set Parameter Operation
	SMFFTI Command File Wizard
	Command File Parameter Reference
	System Parameter Reference
	Full Example Command File

